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Abstract: A robust modelling method was proposed to extract chromophore information in
multi-layered skin tissue with spatially-resolved diffuse reflectance spectroscopy. Artificial neural
network models trained with a pre-simulated database were first built to map geometric and
optical parameters into diffuse reflectance spectra. Nine fitting parameters including chromophore
concentrations and oxygen saturation were then determined by solving the inverse problem of
fitting spectral measurements from three different parts of the skin. Compared to the Monte Carlo
simulation accelerated by a graphics processing unit, the proposed modelling method not only
reduced the computation time, but also achieved a better fitting performance.
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1. Introduction

Diffuse reflectance spectroscopy (DRS) is widely used to measure optical properties of tissue
such as absorption and scattering coefficients. It is successfully applied for noninvasively
characterization of biological tissue, morphological investigation, and diagnosis of diseases [1–5].
To extract optical properties from spectral measurements, an accurate model is required to
resolve forward and inverse relationship between a set of optical properties and its corresponding
diffuse reflectance spectra. The diffuse approximation was first introduced to analytically model
the diffuse reflectance emitted from tissue [6]. However, the diffuse theory suffers from many
limitations such as assumptions on high scattering medium and sufficiently large separations
between the light source and the detector. Monte Carlo (MC) simulations have been developed and
used as a gold standard approach to overcome the shortcomings of the diffuse theory [7]. Since
the MC simulation relies on repeated random sampling to describe the radiative transfer process,
it inevitably requires sufficient computation time to obtain accurate results. Some researchers have
proposed many methods to accelerate simulations [8], but it is still time-consuming to inversely
determine tissue optical properties, especially for superficial multi-layered tissue models.
Therefore, several methods based on pre-simulated MC databases have been proposed to

obtain the diffuse reflectance and optical properties efficiently including semi-empirical/empirical
models (SE/EMs), look-up table (LUT), inverse artificial neural network (I-ANN) and forward
artificial neural network (F-ANN). For example, Yudovsky and Pilon provided a general semi-
empirical model for two-layered semi-infinite tissue based on two flux approximations [9, 10].
Parameters appearing in the analytic expressions were fitted to match results fromMC simulations.
The model would then be used to inversely resolve chromophore information for two-layered
skin tissue. Fredriksson et al. proposed an efficient method of modelling the diffuse reflectance
spectrum for three-layered skin tissue by linearly interpolating path length distributions from
72 base simulations [11]. Beer-Lambert’s law was applied to calculate absorptions for each
path length, and a total of nine fitting parameters were utilized to solve the inverse problem.
Zhong et al. and Sharma et al. developed a look-up table based on two-layered MC simulations
to inversely evaluate physiological characteristics of skin tissue [12,13]. The numerical model
could efficiently and accurately determine volume fraction of melanin, volume fraction of blood,
and oxygen saturation from spectral measurements. Wang et al. constructed I-ANN models
trained with condensed MC simulations to directly obtain optical coefficients for a two-layered
superficial tissue model [14]. F-ANN models were introduced by Yudovsky and Durkin to
map a set of geometric properties and optical coefficients into spatial frequency domain diffuse
reflectance [15, 16]. Iterative curve-fitting method was then applied to find an optimal set of
chromophore concentrations and oxygen saturation for a superficial two-layered skin model.
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The objective of this study is to present an efficient method capable of estimating scattering
coefficients and chromophore information in multi-layered skin tissue from spatially-resolved
diffuse reflectance spectra. First, F-ANN models trained with a pre-simulated database were
built to map nine input parameters including three thicknesses and six optical coefficients into
spatially-resolved diffuse reflectance spectra. Thicknesses of the stratum corneum and two other
epidermal layers were measured by in vivo harmonic generation microscopy (HGM) [17], and in
vivo diffuse reflectance spectra were obtained with a custom-built DRS system [18]. Nine fitting
parameters appearing in wavelength-dependent expressions were then determined by solving the
inverse problem of fitting spectral measurements. A flowchart of our proposed method is shown
in Fig. 1.

Fig. 1. The flowchart of the forward modelling and the iterative curve fitting to solve the
inverse problem.

2. Methods, models and measurements

2.1. Pre-simulated database

Multi-layered skin tissue was assumed to contain four homogenous layers (i.e., stratum corneum,
intermediate epidermis without melanin, basal epidermis with melanin, and dermis). The stratum
corneum was a keratinized superficial layer, and the intermediate epidermal layer consisted
of the stratum granulosum and the stratum spinosum. A high concentration of melanin was
located within the basal epidermal layer [17]. The geometric and optical parameters over visible
wavelengths were considered to cover a wide range for the skin tissue model as summarized in
Table 1 [19–21]. The thicknesses of the upper three layers varied from 5 to 30, 5 to 30, 10 to
60 µm respectively, and the thickness of the dermis was assumed to be infinite. The scattering
coefficients of the lower two epidermal layers (µs2, µs3) were set to have a fixed ratio, and
the absorption coefficients of the upper two layers (µa1, µa2) were assumed to be the same.
Anisotropy factors of the Henyey-Greenstein scattering phase function (gx) were selected to be
0.92, 0.75, 0.75 and 0.715 from upper to lower layers. All layers had an equal refractive index of
1.42.

Simulations of light transport in the multi-layered skin model were performed using public
MCML code [22] with modifications to accelerate the computation by the graphics processing unit
(GPU, GeForce GTX 1080) [23]. A Gaussian beam consisting of 100 million photons was used
as the incident light perpendicular to the tissue surface. The diffuse reflectance remitted from the
tissue surface was collected by three optical fibers which were separated from the source fiber by
distances (SDS) of 0.22 mm, 0.45 mm and 0.73 mm, respectively. All fibers had a core diameter of
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0.2 mm and a core refractive index of 1.457 with a numerical aperture of 0.26, and were in gentle
contact with skin tissue. The nine input parameters (th1, th2, th3, µa1, µs1, µs2, µa3, µa4, µs4) were
randomly assigned within the setting range for each MC simulation, and a total of 30,000 samples
were then created as a pre-simulated database.

Table 1. Setting ranges of input geometric and optical parameters.
thx(µm) µax(cm)−1 µsx(cm)−1 gx

Stratum corneum (x=1) 5-30 0.1-5 100-1000 =0.920
Intermediate epidermal layer (x=2) 5-30 =µa1 10-500 =0.750
Basal epidermal layer (x=3) 10-60 1-350 =1.35µs2 =0.750
Dermis (x=4) =Inf 0.01-15 10-500 =0.715

2.2. Forward ANN model

Three F-ANN models, one for each SDS, were built using the Neural Network Toolbox (The
MathWorks, Inc.). The models consisted of an input layer, double hidden layers with neurons
varied from 15 to 85 and an output layer. The nine input parameters from the pre-simulated
database were first normalized by linearly mapping minimum and maximum values to [-1 1].
The weights and biases in the model were tuned by minimizing the relative error between the
estimated and the target reflectance. The log-sigmoid function was chosen as the transfer function
to generate outputs for the subsequent layers including the final output layer. The scaled conjugate
gradient algorithm was used to train the F-ANNmodels. During the training process, the database
was randomly divided into three subsets (i.e., 70% for the training set, 15% for the validation
set, and 15% for the testing set). The training set was used to optimize the models and estimate
diffuse reflectance, the validation set was monitored to avoid overfitting, and the testing set was
used to evaluate the performance of the trained models.

2.3. Wavelength-dependent expressions for optical coefficients

2.3.1. Stratum corneum, intermediate and basal epidermal layers

The scattering coefficients of the upper two layers (µs1, µs2) were both assumed to have a power
law relation with the wavelength as commonly done for biological tissues [20]:

µsx =
Cxλ

−bx

1 − gx
(x = 1, 2), (1)

where Cx and bx are fitting parameters; λ is the wavelength in nm; gx is the anisotropy factor.
Our previous study found a high scattering coefficient in the uppermost keratin layer of oral
epithelial tissue using quantitative phase images of thin tissue slices. In addition, the scattering
coefficients of the basal and intermediate layers approximately had a fixed ratio of 1.35 [24].
Since the depth-dependent morphology of epithelial cells in the oral epithelium is similar to
that of epidermal cells in the skin and the scattering coefficient is highly correlated with the
morphology, we assumed that the scattering coefficients of the basal and intermediate epidermal
layers (µs2, µs3) also had the same ratio.

The absorptions of the upper two layers (µa1, µa2) were assumed to be approximately the same
as epithelial cells because these layers had negligible melanin [17, 25]; as a result, the absorption
coefficients could be expressed as:

µa1 = µa2 = µa,e(λ), (2)
where µa,e(λ) is the absorption coefficient measured from thin slices of bronchus epithelial
tissue [26].
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Melanin has a broad absorption spectrum exhibiting stronger absorption at shorter wavelengths.
This dominant absorber was assumed to exist only in the basal layer of the epidermis whose
absorption coefficient (µa3) could be calculated as:

µa3 = fmµa,m(λ) + (1 − fm)µa,e(λ), (3)

where fm is the volume fraction of melanin and µa,m(λ) is the absorption coefficient of melanin
given by [27]:

µa,m(λ) = 1.7 × 1012λ−3.48(cm−1) (4)

2.3.2. Dermis

The scattering coefficient of the dermis (µs4) was also expressed as:

µs4 =
C3λ

−b3

1 − g4
, (5)

where C3 and b3 are fitting parameters.
The absorption coefficient of the dermis (µa4) was modeled as a combination of the absorption

of blood, water and collagen [28]:

µa4 = fbµa,b(λ) + fwµa,w(λ) + (1 − fb − fw)µa,c(λ), (6)

where fb is the average volume fraction of blood; fw is the volume fraction of water which
was assumed to have a fixed value of 70% [19]; µa,b(λ), µa,w(λ), µa,c(λ) are the absorption
coefficients of blood, water and collagen, respectively. The absorption coefficients measured
from pure water and gelatin sheets with 100% collagenous protein were used for µa,w(λ) and
µa,c(λ), respectively [28, 29]. µa,b(λ) is formed by summing the absorption coefficients of
oxy-hemoglobin (µa,oxy) and deoxy- hemoglobin (µa,deoxy), which are given by [30]:

µa,oxy(λ) = 2.303εoxy(λ)ChemeS/64, 532 and (7)

µa,deoxy(λ) = 2.303εdeoxy(λ)Cheme(1 − S)/64, 500, (8)

where εoxy(λ) and εdeoxy(λ) are known molar extinction coefficients of oxy-hemoglobin and
deoxy-hemoglobin, respectively; Cheme represents the hemoglobin concentration of blood which
is typically assumed to be 150 g/l; S (%) is the unknown oxygen saturation [30].

2.4. Iterative curve-fitting method

According to the review of the literature [19, 28, 31], the values of nine fitting parameters
(C1, b1,C2, b2,C3, b3, fm, fb, S) were constrained between the upper and lower bounds as shown
in Table 2. The setting ranges of µa3 and µa4 in Table 1 were chosen to cover the values of
the absorption coefficients generated by the bounded parameters ( fm, fb, S) while the fitting
parameters for scattering coefficients (C1, b1,C2, b2,C3, b3) were non-linearly constrained to
ensure that the scattering coefficients would fall within the setting range of µs1, µs2 and µs4.
An initial guess of the fitting parameters was randomly assigned to generate optical coefficients
based on Eqs. (1)-(8). The optical coefficients combined with the thicknesses obtained from
HGM images were fed into the trained F-ANN models to estimate diffuse reflectance spectra.
The Matlab built-in function “fmincon” then optimized the fitting parameters by minimizing
an objective function which was defined as the root-mean-squared percent error between the
estimated and the measured diffuse reflectance spectra:
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RMSE =

√∑l
j=1

∑k
i=1 [(

Ri, j−ri, j
ri, j

) × 100]2

l × k
%, (9)

where l and k were the total number of fibers and wavelengths analyzed, respectively; R and
r represented the estimated and the measured diffuse reflectance spectra. The fitting function
stopped the optimization process when the current step size was less than a step tolerance of
10−7. The above random guess and fitting process were repeated for 100 times to find an optimal
local minimum.

Table 2. Lower and upper bounds for fitting parameters.
C1(cm)−1 b1 C2(cm)−1 b2 C3(cm)−1 b3 fm fb S

Lower bound 1 × 105 1 1 × 105 1 1 × 105 1 1% 0.0% 0.0%
Upper bound 5 × 106 2 5 × 106 2 5 × 106 2 25% 0.5% 100%

2.5. Spatially-resolved diffuse reflectance spectra of skin tissue

The diffuse reflectance spectra were acquired by a custom-built DRS system which shined white
light (410-760 nm). The setup of the source and detectors was the same as those described in Sec.
2.1. We used a set of five homogeneous aqueous phantoms to calibrate the diffuse reflectance
spectra and to establish calibration factors for removing the effects of non-uniform spectral
response and background of the system. The tissue mimicking phantoms were made of known
concentrations of polystyrene beads (Polysciences, Inc., Polybead Microspheres) and hemoglobin
(Sigma-Aldrich, ferrous stabilized human hemoglobin). The calibration phantoms contained
polystyrene beads with a diameter of 0.51±0.008 µm at concentrations of 9.10×1010, 5.60×1010,
3.64 × 1010, 2.28 × 1010, and 1.21 × 1010 particles/ml, respectively. The first four phantoms
and the last phantom also contained hemoglobin at concentrations of 0.056 and 0.1126 mg/ml
respectively. Scattering coefficients and absorption coefficients of the phantoms were obtained
using Mie theory and UV-visible absorption spectroscopy measurements, respectively. With the
known optical coefficients, a linear calibration relation was then established by comparing the
measured diffuse reflectance of the phantoms to the simulated diffuse reflectance. In this study,
experiments using the DRS and the HGM system were approved by the Institutional Review
Board at National Taiwan University Hospital, and the informed consent was obtained from
healthy volunteers.

3. Results

3.1. The training results of F-ANN models

The critical point of this study was to build F-ANN models that accurately mapped geometric and
optical parameters into diffuse reflectance at several SDSs. There were two factors that greatly
influenced the accuracy of F-ANN models: (1) the sample size used in the training process and
(2) the coefficient of variation (CV) of MC simulations. We had used several sample sizes from
3,500 to 21,000 to train F-ANN models with 55 neurons for each hidden layer. The absolute
relative error between the estimated and the target reflectance gradually converged to a minimum,
and a total of 21,000 samples were enough to build robust F-ANN models without sacrificing
the performance. The accuracy of F-ANN models for each SDS with various hidden neurons
was summarized in Table 3. The errors of the best models were 1.28%±1.19%, 2.27%±2.40%
and 3.59%±4.27% for the SDS of 0.22 mm, 0.45 mm and 0.73 mm, respectively. The curves of
training, validation and testing error for each training epoch were depicted in Fig. 2(a).
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In addition, the CV of MC simulations would induce the uncertainty in the F-ANN models to
predict the diffuse reflectance. The value of CV at a specific reflectance value was estimated by
conducting a random process for 20 times. The random process repeated 108 times an event of
which the occurrence probability was equal to the probability of a photon collected by the fiber.
The curve of CV versus reflectance was then obtained and plotted in Fig. 2(b). Furthermore,
we used the F-ANN models with minimal errors to generate the diffuse reflectance for each
sample in the training and the testing set. The curves of error versus reflectance in Fig. 2(b) were
acquired by averaging the absolute relative errors of the samples in each reflectance bin of the
histograms as shown in Figs. 2(c) and 2(d). The curves demonstrated that the error had a negative
correlation with the value of the diffuse reflectance, and was highly correlated with the CV of
MC simulations. According to Fig. 2(b), the error in the testing set reached around 30% at the
reflectance of 10−8 which occurred in highly absorbing media (i.e., µa3>300 and µa4>10). To
solve this issue, 1177 samples in the database with the reflectance lower than 10−7 at the SDS of
0.73 mm were re-simulated by launching one billion photons to reduce the variation in simulated
diffuse reflectance. F-ANN models for the SDS of 0.73 mm were then re-trained and re-tested
with the updated database. The results, as summarized in Table 3, showed that the mean and the
standard deviation of the absolute relative errors of the best model decreased from 3.59%±4.27%
to 3.19%±3.04%. Curves of the error versus the reflectance as depicted in Fig. 2(b) revealed
that the error for the highly absorbing media decreased to about 8%. After the two-step training
process, the F-ANN models had been prepared to solve the inverse problem.

SDS=0.73 mm

SDS=0.45 mm

SDS=

0.22 mm

Fig. 2. (a) The error versus the number of training epochs was obtained by modelling the
diffuse reflectance at each SDS with the best F-ANN model in Table 3. The training time
for each epoch was around 0.15s. (b) The curves of CV versus reflectance and error versus
reflectance. (c) The histogram of the reflectance collected at three SDSs in the training set.
(d) The histogram of the reflectance collected at three SDSs in the testing set.

Table 3. Mean and standard deviation of the absolute relative error of the F-ANN models.
1st training 1st training 1st training 2nd training

Neurons SDS=0.22 mm SDS=0.45 mm SDS=0.73 mm SDS=0.73 mm
[15 15] 1.57%±1.45% 2.56%±2.73% 3.97%±4.85% 3.53%±3.38%
[25 25] 1.39%±1.27% 2.31%±2.46% 3.68%±4.31% 3.21%±3.05%
[35 35] 1.35%±1.21% 2.27%±2.40% 3.69%±4.29% 3.21%±3.05%
[45 45] 1.35%±1.23% 2.29%±2.44% 3.65%±4.34% 3.19%±3.04%
[55 55] 1.28%±1.19% 2.27%±2.46% 3.61%±4.36% 3.19%±3.07%
[65 65] 1.38%±1.26% 2.28%±2.45% 3.59%±4.27% 3.24%±3.08%
[75 75] 1.38%±1.26% 2.31%±2.49% 3.70%±4.45% 3.40%±3.17%
[85 85] 1.29%±1.24% 2.36%±2.50% 3.63%±4.27% 3.31%±3.15%
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3.2. Validations of F-ANN models with simulated DRS data

Fifteen sets of fitting parameters were randomly sampled to generate optical coefficients over a
wavelength range of 410 to 760 nm. The generated coefficients combined with fixed thicknesses
of 15, 15 and 30 µm for the upper three layers were used to model diffuse reflectance spectra. 3%
random Gaussian noise was added to the spectral data to simulate experimental errors. The initial
guess and the iterative curve-fitting method described in Sec. 2.4 were repeated for 100 times
to find an optimal set of fitting parameters. Root-mean-squared percent errors of the recovered
optical coefficients, absolute relative errors of the estimated chromophore concentrations and
absolute errors of the oxygen saturation for 15 sets of MC-simulated data were summarized in
Table 4. Curve fitting results of MC-simulated data were depicted in Fig. 3.

The results revealed that the scattering coefficient of the stratum corneum (µs1) had the largest
root-mean-squared error on average among all the optical coefficients. The reason was that
the stratum corneum was a highly forward-scattering and thin layer. The partial derivative of
the objective function with respect to µs1 was very low. Therefore, the recovering accuracy
of µs1 was susceptible to the noise interference. Based on the same reason, the recovering
accuracies of µs2 and µs3 were also limited. This issue could be improved by using oblique
fibers to enhance the sensitivity to the scattering coefficient of the epithelium [32,33]. On the
contrary, µa3, µa4 and µs4 had great fitting accuracy since the objective function was sensitive to
their variations. In addition, the means and standard deviations of the errors of the estimated
chromophore information were 3.25%±2.87%, 3.59%±2.60% and 1.63%±1.40% for fm, fb , and
S respectively. The theoretical evaluation validated that the proposed method could accurately
extract the chromophore information with a high degree of accuracy.

Table 4. Errors of the recovered optical coefficients and the estimated chromophore in-
formation. The means and the standard deviations (STD) were calculated over all the
samples.

Sample µs1 µs2 µa3 µs3 µa4 µs4 fm fb S
1 11.3% 1.60% 0.71% 1.60% 0.90% 2.27% 0.72% 1.23% 0.72%
2 8.26% 5.10% 0.70% 5.10% 2.62% 1.54% 0.72% 5.31% 1.53%
3 52.1% 39.5% 10.8% 39.5% 3.03% 1.84% 6.88% 4.47% 2.91%
4 29.5% 2.16% 8.94% 2.16% 4.03% 2.29% 9.96% 7.27% 1.69%
5 13.1% 9.52% 0.37% 9.52% 2.14% 3.89% 0.38% 4.64% 2.19%
6 5.89% 10.3% 5.22% 10.3% 2.16% 3.01% 5.44% 3.69% 0.97%
7 10.4% 4.72% 5.10% 4.72% 4.40% 1.43% 5.25% 7.56% 0.16%
8 67.1% 30.7% 3.72% 30.7% 1.10% 3.12% 4.05% 0.58% 2.18%
9 28.8% 2.31% 1.07% 2.31% 0.12% 3.29% 1.12% 0.24% 0.24%
10 11.2% 5.46% 0.30% 5.46% 0.71% 0.86% 0.30% 1.02% 0.71%
11 19.9% 10.4% 1.72% 10.4% 3.27% 1.02% 1.78% 7.24% 5.37%
12 26.4% 40.3% 2.13% 40.3% 0.91% 2.98% 2.17% 1.59% 0.40%
13 34.9% 16.8% 5.33% 16.8% 0.53% 7.00% 5.44% 0.58% 0.68%
14 46.5% 3.00% 3.24% 3.00% 2.06% 3.26% 3.48% 3.53% 3.19%
15 22.8% 4.69% 1.00% 4.69% 2.43% 2.01% 1.04% 4.91% 1.51%

Mean 25.9% 12.4% 3.36% 12.4% 2.24% 2.56% 3.25% 3.59% 1.63%
STD 17.9% 13.4% 3.21% 13.4% 1.81% 1.57% 2.87% 2.60% 1.40%
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Fig. 3. Curve fitting results of 15 sets of MC-simulated data.
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3.3. The application of F-ANN models to extract chromophore information from in vivo
experiments

Diffuse reflectance spectra of three different parts of the skin (i.e. face, ventral arm and dorsal
arm) from three healthy human subjects were obtained by the DRS system described in Sec. 2.5.
In our previous study, we found that the error of extracting optical coefficients from two-layered
tissue phantoms would be reduced if the thickness information was known [34]. Therefore, HGM
with sub-micrometer resolution was used to non-invasively measure the thicknesses of the stratum
corneum and the other two epidermal layers (th1, th2, th3). The F-ANNmodels were then applied
to extract chromophore concentrations and oxygen saturation in the multi-layered skin tissue.
After 100 times of the optimization process with different initial guesses, the optimal set of fitting
parameters along with its corresponding diffuse reflectance spectra and optical coefficients was
shown in Table 5 and Fig. 4. The fitting results indicated that the volume fraction of melanin
( fm) in the epidermis varied from 8.23% to 17.5% which was defined as moderately pigmented
skin [31]. The average volume fraction of blood ( fb) in the dermis was around 0.2% [20] which
was slightly lower than the typical value. The two dips in reflectance spectra at around 540 nm
and 575 nm depicted in Fig. 4 corresponded to the high level of oxygen saturation (S) [30]. The
stratum corneum had the strongest scattering property of all the layers, which was consistent with
our previous research [24]. The scattering coefficients of the dermis were approximately from 150
to 60 cm−1 with the wavelengths ranging from 410 to 760 nm while the scattering coefficients of
the lower two epidermal layers of the dorsal arm was greater than those of the face and the ventral
arm. In addition, the fitted diffuse reflectance spectra showed a small mismatch from 450 nm to
700 nm in Fig. 4. Based on our previous studies, the mismatch would cause about 10% RMSE
between the fitted and the measured diffuse reflectance spectra [18,33]. There were several factors
that influenced the fitting performance for in vivo experiments: (1) optical properties of each
layer in the skin model are not totally homogeneous, and (2) the tissue scattering phase function
may be different from our assumption. The RMSE would be reduced if these issues were solved.
To further validate the F-ANN’s performance, the MC simulation was implemented to generate
diffuse reflectance spectra. The optical coefficients used in the forward simulations were derived
from the fitting results of the F-ANN. The root-mean-squared percent error of the MC-simulated
and the measured diffuse reflectance spectra was then calculated and denoted as RMSE’ in Table
5. The results showed that the F-ANN models could accurately map the fitted parameters into the
corresponding spectra since the diffuse reflectance spectra obtained from the F-ANN models and
the MC simulations matched well as shown in Fig. 4.
For comparison of the performance of solving the inverse problem, we implemented the

identical fitting process once for each DRS measurement using MC simulations accelerated
by the GPU (GPU-MC) to obtain diffuse reflectance. The fitting result of GPU-MC was also
summarized in Table 5. The relative deviations between the chromophore information extracted
by the two methods were about 10%, 35% and 10% for fm, fb, and S respectively. The RMSE
revealed that the F-ANN had a better fitting performance than the GPU-MC. The primary reason
was that the variation of MC simulations induced a noisy objective function, which prevented
the RMSE from converging to an optimal minimum. Due to the noisy issue, finite differences
of each fitting parameter should be carefully chosen to accurately calculate the gradients of the
objective function. The issue can be improved by sacrificing the computation time for reducing
the variation of MC simulations. In contrast, F-ANN models had a relatively smooth objective
function. As a result, more than half of the tried initial guesses approached to the values with the
minimal RMSE. Conclusively, the experiment showed that the F-ANN was a robust modelling
method of solving the inverse problem, and the fitting speed of F-ANNmodels was approximately
1,000 times faster than that of GPU-MC simulations.
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Table 5. The fitting results of the F-ANN and the GPU-MC.
Skin th1 th2 th3 fm fb S RMSE RMSE’
Face 10.8 28.8 27.0 8.23% 0.20% 100% 10.4% 10.6%

F-ANN Ventral arm 16.2 19.8 12.6 11.3% 0.18% 93% 8.77% 9.06%
Dorsal arm 12.5 10.4 17.0 17.2% 0.14% 100% 13.2% 13.3%

Face 10.8 28.8 27.0 7.61% 0.14% 93% 15.4% -
GPU-MC Ventral arm 16.2 19.8 12.6 12.6% 0.16% 89% 13.1% -

Dorsal arm 12.5 10.4 17.0 16.1% 0.27% 84% 17.0% -

(a) Face

(b) Ventral arm

(C) Dorsal arm

Fig. 4. (a)(b)(c) The curve fitting results of the optical coefficients and the diffuse reflectance
spectra for three different parts of the skin.

4. Discussion

This study presented detailed descriptions of using F-ANN modelling method to solve the inverse
problem of fitting spatially-resolved diffuse reflectance spectra. The built models could forward
map a wide range of input parameters into the diffuse reflectance and inversely determine the
chromophore information in the superficial multi-layered skin tissue. In addition to training three
F-ANN models, one for each SDS, we tested whether a single F-ANN model could describe
different SDSs. Unfortunately, the result showed that the F-ANNmodel failed to describe different
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radiative transfer functions simultaneously. It indicated different radiative transfer functions could
not share the same hidden layers. As a result, F-ANN models were built separately for each SDS.
Despite the minor drawback, F-ANN shows distinct features and advantages over other methods
summarized in Table 6. The gold standard approach, Monte Carlo simulations, can inversely
resolve optical coefficients without suffering limitations from specific geometries of the tissue,
light source or detectors. However, achieving small variations of MC simulations requires huge
computation cost. Even though several techniques have been proposed to address the issue, it is
still time-consuming to determine optical coefficients of superficial multi-layered tissue models
using spatially-resolved DRS. For example, our previous studies showed that both scalable MC
and GPU-MC simulations took around one day to iteratively curve-fit a set of spectra from a
single measurement [32, 33]. In contrast, the optimization process in the proposed modelling
method is finished within a few minutes. Moreover, the variation of MC simulations may result
in less desirable fitting results due to the noisy objective function.

Table 6. Comparisons of different modelling methods.
Method Accuracy Time cost Limitation Database
MC High High No No

SE/EMs Medium Medium High Small
LUT High Medium Low Large
I-ANN Low Low Medium Medium
F-ANN High Medium Low Medium

Loop-up-table is a numerical method of estimating new values of diffuse reflectance by
interpolating a discrete set of known parameters. The accuracy could be very high when the
database is sufficiently large and the variation of MC simulations is controlled [35,36]. The main
disadvantage of the LUT method is that evenly spaced increments for each optical parameter of
interest are required for the interpolation, which implies that the database tends to be very large.
As a result, only three or four-dimensional LUT has been developed to extract physiological
parameters and optical properties of two-layered tissue [12, 13]. For example, Sharma et al. used
20 evenly spaced increments each for four free parameters to generate a database with 160,000
samples [13]. By contrast, F-ANN has an ability to efficiently solve the nonlinear relationship
between input parameters and the target reflectance. The input parameters can be randomly
sampled, and a smaller database is sufficient to generate a robust F-ANN model.
I-ANN is a popular method that can directly determine optical coefficients without using

any iterative optimization process. However, several studies showed that I-ANN models had
large prediction errors [37–42]. To improve the accuracy, checking the uniqueness of mapping
reflectance sets into corresponding optical parameters is needed [43]. Due to the uniqueness issue,
the recovery ability of I-ANN models is limited to one or two-layered tissue. By contrast, the
structure of the multi-layered F-ANN model was closer to real skin structures. It would provide
more realistic information about the skin than one or two-layered tissue models [11]. Moreover,
the I-ANNmethod lacks the advantage of using the prior knowledge of wavelength dependences of
optical coefficients. A post-fitting process was needed to apply wavelength-dependent expressions
to the predicted optical coefficients obtained from I-ANN models [14]. Although F-ANN requires
more computation than I-ANN, it can avoid the uniqueness issue and improve both the accuracy
and robustness of extracting optical properties using broadband spectra.

Compared to LUT, I-ANN and F-ANN modelling methods, semi-empirical/empirical methods
require smaller databases to build forward models for diffuse reflectance emitted from the tissue.
However, the disadvantage of SE/EMs is that they can only be applied to specific conditions. For
example, several models assumed tissue to be a one-layered homogeneous turbid medium [44,45];
two-layered tissue models assumed either the upper or bottom layer to be strongly forward
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scattering [9,10,46,47]; multi-layered tissue models assumed that scattering properties are equal
for all layers [11]. The numerical F-ANN model, by contrast, is versatile and not subject to the
above limitations.

Due to the robustness and efficiency, F-ANN is a promising tool to replace time-consumingMC
simulations for many applications. The proposed method can be used to extract optical properties
for different kinds of biological tissues such as mucosa in the digestion track, the breast, brain,
skin, subcutaneous fat and muscle tissues. Combined with wavelength-dependent expressions, the
modelling technique is capable of solving chromophore information in multi-layered tissues. It is
also well suited to be applied to the spatial-frequency-domain DRS [15,16], frequency-domain
DRS [48], and image-based DRS such as modulated imaging [49] and hyperspectral imaging [50].

5. Conclusion

Spatially-resolved diffuse reflectance spectroscopy has been employed to analyze optical properties
of biological tissue. This work presented a modelling method of extracting scattering coefficients,
chromophore concentrations and oxygen saturation in multi-layered skin tissue based on F-ANN
models for in vivo DRS measurements. Through the two-step training process, the models
accurately mapped nine parameters including three thicknesses and six optical coefficients into
diffuse reflectance spectra. The results showed that absolute relative errors of models were
1.28%±1.19%, 2.27%±2.40% and 3.19%±3.04% for the three optical fibers separated from the
source fiber by distances of 0.22 mm, 0.45 mm and 0.73 mm, respectively. The built models were
then used to extract optical properties of MC-simulated spectra for theoretical validations. It was
shown that the F-ANN models could accurately estimate chromophore information while noise
interference would affect the accuracy of recovering scattering properties of epidermal layers
especially for the stratum corneum. To further demonstrate the model’s applicability, diffuse
reflectance spectra of three different parts of the skin (i.e. face, ventral arm and dorsal arm)
were measured in vivo by a custom-built DRS system. The thicknesses of three epidermal layers
were pre-determined by in vivo harmonic generation microscopic imaging. The chromophore
information of the skin tissue was then obtained by iteratively curve-fitting the F-ANN models
and estimating optical coefficients with known wavelength dependences. The experimental results
demonstrated that the F-ANN models can significantly reduce the computation time with a better
fitting performance compared to GPU-MC simulations. Due to the robustness and efficiency,
F-ANN is a promising tool for many applications. In the future, we would implement F-ANN
models for the diagnosis of diseases and characterization of physiological conditions of tissues.

Funding

The Ministry of Science and Technology, Taiwan (MOST) (105-2221-E-002-068-MY3).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

                                                          Vol. 9, No. 4 | 1 Apr 2018 | BIOMEDICAL OPTICS EXPRESS 1544 




